Agora Python SDK 使用案例:结合 TensorFlow 在视频通话中实现图像识别

首先,声网 Agora Python SDK 已经上线了:

近两年来,Python在众多编程语言中的热度一直稳居前五。Python 拥有很活跃的社区和丰富的第三方库,Web 框架、爬虫框架、数据分析框架、机器学习框架等,开发者无需重复造轮子,可以用 Python 进行 Web 编程、网络编程,开发多媒体应用,进行数据分析,或实现图像识别等应用。其中图像识别是最热门的应用场景之一,也是与实时音视频契合度最高的应用场景之一。

在完成 Agora Python SDK 后,我们还准备了一个 Demo,结合 TensorFlow 来实现图像识别。

Agora Python TensorFlow Demo:https://github.com/AgoraIO-Community/Agora-Python-Tensorflow-Demo

识别效果如下图。左右两个图像分别显示了通话对方和本地的视频画面。在文本框中显示着可以从对方画面中识别出的人与物。(人脸贴图是后期 P 上去的,Demo 里还没有加滤镜、贴图效果哦,这个大家可以自己尝试着玩一玩,应该还有很多花样姿势可以搞。)

在详细分析这个 Demo 之前,我们可能还需要给没有接触过 TensorFlow 的朋友们简单介绍一下 TensorFlow 的使用。

TensorFlow图片物体识别

TensorFlow是Google的开源深度学习库,你可以使用这个框架以及Python编程语言,构建大量基于机器学习的应用程序。而且还有很多人把TensorFlow构建的应用程序或者其他框架,开源发布到GitHub上。所以我们今天主要基于Tensorflow学习下物体识别。

TensorFlow提供了用于检测图片或视频中所包含物体的API,详情可参考以下链接:

物体检测是检测图片中所出现的全部物体并且用矩形(Anchor Box)进行标注,物体的类别可以包括多种,例如人、车、动物、路标等。举个例子了解TensorFlow物体检测API的使用方法,这里使用预训练好的ssd_mobilenet_v1_coco模型(Single Shot MultiBox Detector),更多可用的物体检测模型可以参考这里

加载库

# -*- coding:
utf-8 -*-
 
import numpy as
np
import
tensorflow as tf
import
matplotlib.pyplot as plt
from PIL import
Image
 
from utils
import label_map_util
from utils
import visualization_utils as vis_util

定义一些常量

PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
NUM_CLASSES = 90

加载预训练好的模型

detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.GraphDef()
  with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
    od_graph_def.ParseFromString(fid.read())
    tf.import_graph_def(od_graph_def, name='')

加载分类标签数据

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map,max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

一个将图片转为数组的辅助函数,以及测试图片路径

def load_image_into_numpy_array(image):
	(im_width, im_height) = image.size
	return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
	
TEST_IMAGE_PATHS = ['test_images/image1.jpg', 'test_images/image2.jpg']

使用模型进行物体检测

with detection_graph.as_default():
	with tf.Session(graph=detection_graph) as sess:
	    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
	    detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
	    detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
	    detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
	    num_detections = detection_graph.get_tensor_by_name('num_detections:0')
	    for image_path in TEST_IMAGE_PATHS:
	    	image = Image.open(image_path)
	    	image_np = load_image_into_numpy_array(image)
	    	image_np_expanded = np.expand_dims(image_np, axis=0)
	    	(boxes, scores, classes, num) = sess.run(
	    		[detection_boxes, detection_scores, detection_classes, num_detections], 
	    		feed_dict={image_tensor: image_np_expanded})
	    	
	    	vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
	    	plt.figure(figsize=[12, 8])
	    	plt.imshow(image_np)
	    	plt.show()


检测结果如下,第一张图片检测出了两只狗狗

实时音视频场景下TensorFlow物体识别

既然TensorFlow在静态图片的物体识别已经相对成熟,那在现实场景中,大量的实时音视频互动场景中,如何来做物体识别?我们现在基于声网实时视频的SDK,阐述如何做物体识别。

首先我们了解视频其实就是由一帧一帧的图像组合而成,所以从这个层面来说,视频中的目标识别就是从每一帧图像中做目标识别,从这个层面上讲,二者没有本质区别。在理解这个前提的基础上,我们就可以相对简单地做实时音视频场景下TensorFlow物体识别。

(1)读取Agora实时音视频,截取远端视频流的图片

    def onRenderVideoFrame(uid, width, height, yStride,
                            uStride, vStride, yBuffer, uBuffer, vBuffer,
                            rotation, renderTimeMs, avsync_type):
         # 用 isImageDetect 字段判断前一帧图像是否已完成识别,若完成置为True,执行以下代码,执行完置为false
        if EventHandlerData.isImageDetect:
            y_array = (ctypes.c_uint8 * (width * height)).from_address(yBuffer)
            u_array = (ctypes.c_uint8 * ((width // 2) * (height // 2))).from_address(uBuffer)
            v_array = (ctypes.c_uint8 * ((width // 2) * (height // 2))).from_address(vBuffer)

            Y = np.frombuffer(y_array, dtype=np.uint8).reshape(height, width)
            U = np.frombuffer(u_array, dtype=np.uint8).reshape((height // 2, width // 2)).repeat(2, axis=0).repeat(2, axis=1)
            V = np.frombuffer(v_array, dtype=np.uint8).reshape((height // 2, width // 2)).repeat(2, axis=0).repeat(2, axis=1)
            YUV = np.dstack((Y, U, V))[:height, :width, :]
            # AI模型中大多数模型都是RGB格式训练,声网提供的视频回调数据源是YUV格式,我们做下格式转换
            RGB = cv2.cvtColor(YUV, cv2.COLOR_YUV2RGB, 3)
            EventHandlerData.image = Image.fromarray(RGB)
            EventHandlerData.isImageDetect = False


(2)Tensorflow对截取图片进行物体识别

class objectDetectThread(QThread):
    objectSignal = pyqtSignal(str)
    def __init__(self):
        super().__init__()
    def run(self):
        detection_graph = EventHandlerData.detection_graph
        with detection_graph.as_default():
            with tf.Session(graph=detection_graph) as sess:
                (im_width, im_height) = EventHandlerData.image.size
                image_np = np.array(EventHandlerData.image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
                image_np_expanded = np.expand_dims(image_np, axis=0)
                image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
                boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
                scores = detection_graph.get_tensor_by_name('detection_scores:0')
                classes = detection_graph.get_tensor_by_name('detection_classes:0')
                num_detections = detection_graph.get_tensor_by_name('num_detections:0')
                (boxes, scores, classes, num_detections) = sess.run(
                    [boxes, scores, classes, num_detections],
                    feed_dict={image_tensor: image_np_expanded})
                objectText = []
                # 如果识别概率大于百分之四十,我们就在文本框内显示所识别物体
                for i, c in enumerate(classes[0]):
                    if scores[0][i] > 0.4
                        object = EventHandlerData.category_index[int(c)]['name']
                        if object not in objectText:
                            objectText.append(object)
                    else:
                        break
                self.objectSignal.emit(', '.join(objectText))
                EventHandlerData.detectReady = True
                # 本帧图片识别完,isImageDetect 字段置为True,再次开始读取并转换Agora远端实时音视频
                EventHandlerData.isImageDetect = True


我们已经将这个 Demo 以及
Agora Python SDK 上传至 Github,大家可以直接下载使用。

Agora Python TensorFlow Demo编译指南:

  • 下载Agora Python SDK :https://github.com/AgoraIO-Community/Agora-Python-SDK
  • 若是 Windows,复制.pyd and .dll文件到本项目文件夹根目录;若是IOS,复制.so文件到本文件夹根目录
  • 下载 Tensorflow模型,然后把 object_detection 文件复制.到本文件夹根目录
  • 安装 Protobuf。然后运行: protoc
    object_detection/protos/*.proto --python_out=.
  • 从这里下载预先训练的模型(下载链接)
  • 推荐使用 ssd_mobilenet_v1_coco 和
    ssdlite_mobilenet_v2_coco,因为他们相对运行较快
  • 提取 frozen graph,命令行运行:python extractGraph.py
    –model_file=‘FILE_NAME_OF_YOUR_MODEL’
  • 最后,在 callBack.py 中修改 model name,在 demo.py 中修改Appid,然后运行即可

请注意,这个 Demo 仅作为演示使用,从获取到远端实时视频画面,到TensorFlow 进行识别处理,再到显示出识别效果,期间需要2至4 秒。不同网络情况、设备性能、算法模型,其识别的效率也不同。感兴趣的开发者可以尝试更换自己的算法模型,来优化识别的延时。

如果 Demo 运行中遇到问题,请回帖反馈、交流,或在 Github 提 issue。